SYNTHESIS AND ABSOLUTE CONFIGURATION OF (-)-PENTALENOLACTONE E METHYL ESTER⁺

KENJI MORI* and MASAHIRO TSUJI⁺⁺

Department of Agricultural Chemistry, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan

(Received in Japan 11 January 1988)

Abstract -- The naturally occurring enantiomer of pentalenolactone E was synthesized as its levorotatory Me ester 1 starting from (+)-2-ethoxycarbonyl-7,7-ethylenedioxybicyclo[3,3,0]octan-3-one 3, which was obtained by treating (\pm)-3 with baker's yeast. The absolute configuration of pentalenolactone E Me ester was established as depicted in 1.

Pentalenolactone E, isolated as its Me ester 1 from cultures of <u>Streptomyces</u> UC 5319, is a sesquiterpene antibiotic with a unique tricyclic ring system.¹ Although there exist six published syntheses of $(\pm)-1$,²⁻⁷ no enantioselective synthesis of the optically active form of 1 has been reported. We became interested in synthesizing the optically active pentalenolactone E Me ester to confirm the stereostructure as depicted in 1, which was proposed in analogy with the established stereostructures of other microbial metabolites related to 1.¹

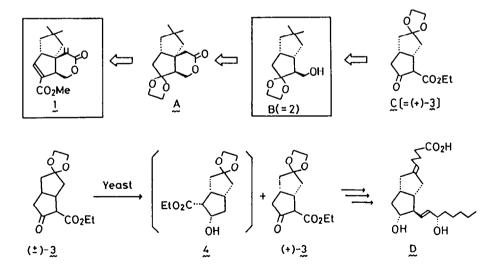
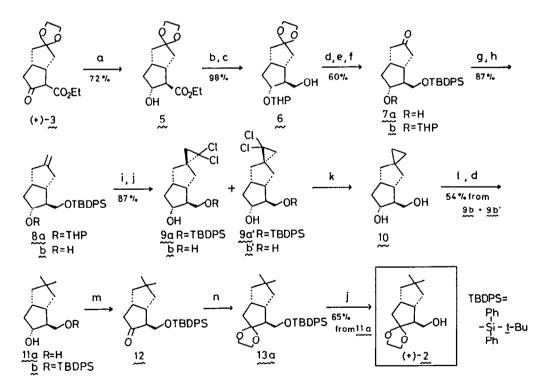



Fig.1. Synthetic plan of (-)-pentalenolactone E Me ester.

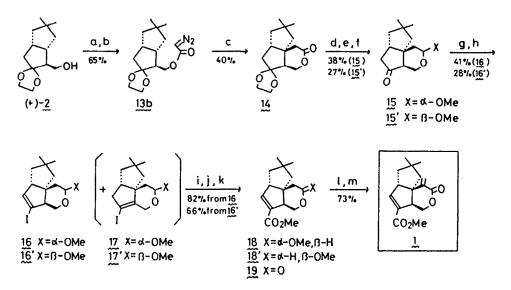
[†]Synthesis of mono- and sesquiterpenoids -- 11. Part 10, K. Mori and H. Tamura, <u>Liebigs Ann.</u> <u>Chem.</u> in the press. ^{††}Present address: Central Research Laboratory, Nisshin Flour Milling Co., Ltd., Oimachi, Saitama 354, Japan. In Fig.1 is shown our synthetic plan. Conversion of lactone A to (\pm) -pentalenolactone E Me ester 1 is a known process.^{2,4} The lactone A, in turn, is derivable from a bicyclic intermediate B (=2).⁴ Therefore, the preparation of enantiomerically pure 2 would enable us to synthesize enantiomerically pure 1. We selected the keto ester C[=(+)-3] as our chiral starting material. This ester [(+)-3] was prepared previously by us by reducing its racemate (±)-3 with yeast.⁸ The reduction yielded a mixture of (+)-3 and 4, which could be readily separated.⁸ Because the absolute configuration of (+)-3 is established as depicted by its conversion to (+)-6a-carbaprostaglandin I₂ (D), our planned synthesis of pentalenolactone E Me ester from (+)-3 <u>via</u> 2 will lead to the enantiomer as depicted in 1. Herein we report in detail our synthesis of the enantiomerically pure and crystalline (+)-2 together with its conversion to (-)-pentalenolactone E Me ester 1.

Synthesis of the bicyclic intermediate (2). Fig.2 shows the route by which (+)-3 was converted into the key-intermediate (+)-2. The crucial introduction of the <u>gem-Me</u>₂ group to the bicyclo[3.3.0]octane ring system was executed by the hydrogenolysis of a cyclo-propane compound 10.

As reported previously, reduction of $(\pm)-3$ with <u>Saccharomyces bailii</u> KI Oll6 yielded unchanged (+)-3 of 92-94% e.e., while dry baker's yeast gave (+)-3 of 62% e.e.⁸ This reduction with <u>S. bailii</u>, however, was more time-consuming than the reduction with baker's yeast (<u>S. cerevisiae</u>), because the precultivation of <u>S. bailii</u> was necessary to secure a sufficient amount of yeast cells to achieve the kinetic resolution <u>via</u> asymmetric reduction. Baker's yeast was more convenient to be handled with. Fortunately in our prelimi-

a) NaBH₄; b) DHP, PPTS; c) LAH; d) TBDPSC1, imidazole; e) ACOH-THF-H₂O (3:1:1); f) DHP, TSOH; g) Ph₃P=CH₂; h) TSOH/MeOH; i) CHC1₃, NaOH, PhCH₂NEt₃C1; j) (<u>n</u>-Bu)₄NF/THF; k) Li/<u>t</u>-RuOH-THF; l) H₂, PtO₂/AcOH; m) PCC; n) HOCH₂CH₂OH, TSOH.

Fig.2. Synthesis of the key bicyclic intermediate 2.


nary survey, the silvl ether 7a was found to be so highly crystalline that its recrystallization could serve to increase the e.e. of enantiomerically impure 7a. Consequently, even slightly optically impure (+)-3 could be employed as the starting material, if we could incorporate 7a as one of our intermediates. We therefore reinvestigated the kinetic resolution of (±)-3 with baker's yeast. When wet and fresh baker's yeast was employed, the reduction of (±)-3 in 0.1 M phosphate buffer (pH 7) proceeded smoothly to give (+)-3 in 34% yield together with 35% yield of 4 (98.8% e.e.; see Experimental). The optical purity of (+)-3, $[\alpha]_D^{24}$ +20.7° (CHCl₃), was estimated to be over 80% on the basis of the previously reported $[\alpha]_D$ value (25.2°) for (+)-3 of 100% e.e.⁸ It thus became clear that the reduction of (±)-3 with fresh baker's yeast was more enantioselective than that with dry baker's yeast. A sufficient amount of (+)-3 was secured by reducing (±)-3 with fresh baker's yeast, and was employed for the transformation as described below.

Reduction of (+)-3 with NaBH₄ gave 5 [84.2% e.e. as determined by the HPLC analysis of the corresponding (<u>R</u>)-MTPA ester⁹], which was further manipulated to give 6.⁸ Treatment of 6 with <u>t</u>-butyldiphenylsilyl chloride (TBDPSCl) and imidazole in DMF was followed by the removal of the T"P and the acetal protective groups to give 7a. After a single recrystallization, the enantiomeric purity of 7a was found to be 98.8% e.e. as estimated by the HPLC analysis of the corresponding (<u>R</u>)-MTPA ester. The conversion of (+)-3 as described above was useful in providing 7a to be employed in the syntheses of not only the present target molecule 1 but also (+)-6a-carbaprostaglandin I₂.⁸

The next task was to convert the C=O group of 7a into CMe2 group. This was done by a series of reactions to achieve methylenation, cyclopropanation, and the reductive cleavage of the cyclopropane ring. Prior to the methylenation, the OH group of 7a was protected as THP ether to give 7b. Treatment of 7b with Ph3P=CH2 gave 8a. Cyclopropanation of 8a or 8b was attempted under the conditions previously reported by others.^{10,11} Neither of the two methods was successful. We then attempted the addition of dichlorocarbene to 8b. This was successful under the phase-transfer condition employing PhCH_NEt_Cl as the catalyst.¹² The product was a stereoisomeric mixture of **9a** and **9a'**, which was treated with $(\underline{n}-Bu)_ANF$ to give a separable mixture of 9b and 9b' in 87% combined yield. A portion of the mixture was separated to give analytical samples of the less polar isomer (presumably 9b) and the more polar isomer (probably 9b'), both as crystals. Reductive dechlorination of a mixture of **9b** and **9b'** was best carried out with Li and t-BuOH in THF 13 to give **10** as the major product. With (n-Bu)₃SnH as the reducing agent, only partial dechlorination was observed yielding an isomeric mixture of monochloro derivatives. Hydrogenolytic cleavage of the cyclopropane ring of 10 was smoothly effected with H $_2$ and PtO $_2$ in AcOH giving 11aas needles. Conversion of 11a to 2 was straightforward as follows. Protection of the primary OH group of 11a as TBDPS ether gave 11b, which was oxidized with CrO3+C5H5N+HCl $(PCC)^{14}$ to give 12. Acetalization of 12 to 13a was followed by the removal of the TBDPS group to give the crystalline key-intermediate (+)-2. The 1 H and 13 C NMR spectra of (+)-2 were in good accord with those reported for oily $(\pm)-2$.⁴ The overall yield of (+)-2 from (+)-3 was 11.2% in 16 steps.

Synthesis of (-)-pentalenolactone E Me ester (1). Although the conversion of $(\pm)-2$ into $(\pm)-1$ was a known process,^{2,4} we carried out the synthesis of (-)-1 from $(\pm)-2$ as shown in Fig.3. We did this in order to establish the absolute configuration of natural 1. The assignment of the absolute configuration was made possible by kind cooperation of Prof. D.E. Cane to reisolate natural 1 in an amount sufficient to measure both its specific rotation and CD spectrum.

According to Cane and Thomas,⁴ (+)-2 was converted to the diazoacetate 13b, which was treated with $Rh_2(OAC)_4$ to effect the carbene insertion reaction giving the δ -lactone 14 as crystals. Reduction of 14 with DIBAL was followed by acetal removal and another acetal

a) TsNHN=CHCOCl, AgCN/C₆H₆; b) Et₃N/CH₂Cl₂; c) Rh₂(OAc)₄/Freon TF; d) DIBAL/Et₂O; e) TsOH/An-H₂O; f) HCl/MeOH; g) N₂H₄-Et₃N/EtOH; h) I₂, Me₃N/THF; i) Ni(CO)₄, MeONa/MeOH; j) dil H₂SO₄/An; k) Jones CrO₃/An; l) MMC/DMF; m) CH₂O, Et₂NH, AcONa/AcOH.

Pig.3. Synthesis of (-)-pentalenolactone E methyl ester.

formation to give a mixture of 15 and 15'. These two acetals were separated, and the structures 15 and 15' were assigned to the less polar and the more polar isomers, respectively, as reported by Cane and Thomas.⁴

For the conversion of 15 and 15' to 1, we adopted the route developed by Paguette <u>et</u> <u>al</u>.² Accordingly, 15 and 15' were separately converted to the iodides 16 and 16', respectively. The unwanted isomers 17 and 17' were also generated in the amount almost equal to 16 and 16'. However, they could be removed by chromatographic purification. Following the procedure of Paguette as shown in Fig.3, 16 and 16' was converted to the oily lactonic ester 19 <u>via</u> 18 and 18'. Finally, methylenation of 19 yielded 1. The overall yield of 1 was 3.4% in 13 steps from (+)-2, 0.4% in 29 steps from (+)-3, or 0.1% in 32 steps from bicyclo[3.3.0]octane-3,7-dione.

The specific rotation of our synthetic pentalenolactone E Me ester 1 was $[\alpha]_D^{22}$ -70.2° (CHCl₃). This value was in good accord with that of the natural 1, $[\alpha]_D^{23}$ -70.6° (CHCl₃).¹⁵ The CD as well as the ¹H and ¹³C NMR and IR spectra of the synthetic 1 were identical to those of an authentic sample kindly sent to us by Professor Cane. Additionally, the synthetic 1 was indistinguishable from the natural 1 upon TLC analysis. We therefore conclude that the Me ester derived from natural pentalenolactone E possesses the absolute configuration as depicted in 1.

EXPERIMENTAL

All maps were uncorrected. IR spectra were measured as films for oils or as KBr discs for solids on a Jasco IRA-102 spectrometer or a Jasco IR-810 spectrometer. ¹H NNR spectra were recorded with TMS as an internal standard and CDCl₃ as a solvent at 200 MHz on a JEOL JNN-FX 200 spectrometer unless otherwise stated. ¹³C NNR spectra were recorded with CDCl₃ as an internal standard and a solvent at 50 MHz on a JEOL JNN-FX 200 spectrometer. Optical rotations were measured with CDCl₃ as a solvent on a Jasco DIP-140 polarimeter or a Jasco DIP-4 polarimeter unless otherwise stated. CD spectra were measured on a Jasco J-20C polarimeter. Mass spectra were recorded on a Hitachi M-80 spectrometer at 70 eV. Merck Kieselgel 60 (Art 7734, 70-230 mesh) or Fuji Devison BW-620 MH were used for SiO₂ column chromatography unless otherwise stated. TLC analyses were performed on a Merck Kieselgel 60 P-254 (0,25 mm, Art 5715).

Reduction of $(\pm)-3$ with baker's yeast: $(15,5R)-2-ethoxycarbonyl-7,7-ethylenedioxybicyclo(3.3.0)octan-3-one <math>(\pm)-3$ and $(1R_2R_3S_5S)-2-ethoxycarbonyl-7,7-ethylenedioxy-3-hydroxybicyclo(3.3.0)octane 4. Compressed baker's yeast (100 g, Oriental Yeast Co., Ltd.,) was dispersed in 0.1 M phosphate buffer (pH 7, 1000 ml) containing glucose (100 g) in a 2000-ml Sakaguchi flask at 30°C. The flask was shaken for 30 min at 30°C, when brisk fermentation took place. An emulsion of (1)-3 (50 g, 20 mmol) in 0.2% Triton X-100 soln (50 ml) was added to the fermentation mixture and the shaking culture was continued at 30°C. Glucose (50 g) was added to the mixture after 7 h and the fermentation was continued for 17 h. The total fermentation period was 24 h. The fermentated mixture after 7 h and the fermentation was continued for 17 h. The total fermentation period was 24 h. The fermentated in vacuo. The residue resulting from nine fermentations [45,0 g of (i)-3 in sum total) was chromatographed over SiO₂ (600 g). The fraction earlier eluted with <u>m</u>-heane-EtOAc (6:1) gave 15,3 g (35%) of 4, [a]<math>^2_4$ +30° (c=1,73). Its IR and ¹H NNR spectra were identical with those reported previously.⁸ A small amount of 4 described above was converted to the corresponding (R)-MTPA ester in the conventional manner, which was analyzed by HPLC. HELC (column, Nucleosil® 50-5, 25 cm x 4.6 mm solvent, <u>m</u>-heane-THF (10:1), 1,0 ml/min; detected at 254 nm) Rt 41.3 min (0,6%), 43.1 min (99,4%). Therefore the optical

(15,2R,3R,5R)-2-Ethoxycarbonyl-7,7-ethylenedioxy-3-hydroxybicyclo(3,3,0)octane 5. In the same manner as reported previously,⁸ (+)-3 was converted to 5, [a] β^3 +23,1° (c=1,56). A small amount of 5 was converted to the corresponding (R)-MTPA ester in the conventional manner, which was analyzed by HPLC under the same condition as described for the (R)-MTPA ester of 4: Rt 23,3 min (92,1%), 27,0 min (7,9%). The optical purity of 5 was therefore 84.2% e.e.

(12,55,65,7R)-6-t-Butyldiphenylsilyloxymethyl-7-hydroxybicyclo[3,3,0]octan-3-one 7a. To a stirred and water-cooled soln of 6 (12.0 g, 40.3 mmol, prepared from 5 in the same manner as reported previously⁸) t-butylchlorodiphenylsilane (11.6 g, 42,0 mmol) in dry DMF (60 ml) was added imidazole (6,5 g, 0,10 mol) and the mixture was stirred for 30 min at room temp. Then the mixture was poured into water, and extracted with ether. The ether soln was washed with water, and concentrated in vacuo. The residue was dissolved in AcOH-water-THF (3:1:1, 270 ml), and the soln was stirred for 1.5 h at 90°C. After cooling, the mixture was poured into water, and extracted twice with BtOAc. The combined EtOAc soln was washed with water, sat NAHCO₃ soln and brine, dried (MgSO₄), and concentrated in vacuo. The residue was chromatographed over SiO₂ (180 g). Elution with n-hexane-EtOAc (4:1-2:1) gave 13.2 g (80%) of 7a. This was recrystallized from n-hexane-EtOAc to give 9.8 g (60%) of 7a as needles, m.p. 100-101°C; $(\alpha)_{0}^{24}$ +9.7° (c=1.97); vmax 3450 (m) 1730 (s), 1590 (w), 1430 (m), 1130 (m), 1115 (m), 1105 (s), 1095 (m) cm⁻¹; ¹H NMR § 1.06 (9H, s), 1.49-2.63 (10H, m), 3.67 (1H, dd, J=10.1 and 7.6 Hz), 3.82 (1H, dd, J=10.1 and 5.1 Hz), 4.10-4.21 (1H, m), 7.37-7.46 (6H, m), 7.64-7.69 (4H, m). (Found: C, 72.97; H, 7.83. Calc for C₂₅H₃₂O₃Si: C, 73.48; H, 7.99%). A small amount of 7a was converted to the corresponding (R)-MTPA ester in the conventional manner, which was analyzed by HPLC under the same condition as described for the (R)-MTPA ester of 4: Rt 21.8 min (99.44), 25.9 min (0.64). The optical purity of 7a was therefore 98.88 e.e.

 $\frac{(15,25,3R,55)-2-t-Butyldiphenylsilyloxymethyl-3-hydroxy-7-methylenebicyclo[3,3,0]octane 8b. A soln of 7a (14.5 g, 35.6 mmol), dihydropyran (4.5 g, 53.3 mmol), and p-TBOH:H₂O (80 mg, 0.42 mmol) in dry CH₂Cl₂ (200 ml) was stirred for 20 min at room temp. Then the mixture was poured into sat NaHCO₃ soln. The CH₂Cl₂ layer was separated and washed with brine, dried (MgSO₄), and concentrated in vacuo to give 19.3 g of crude 7b, vmax 1745 (s), 1590 (w), 1430 (m), 1115 (n), 1080 (m) cm⁻¹. This was employed in the next step without further purification.$

A soln of NaCH₂SOMe (71.2 mmol) was prepared from NaH (2,94 g, 60% dispersion in mineral oil, 71.2 mmol) and dry DMSO (42 ml). To this was added a soln of methyltriphenylphosphonium bromide (25.4 g, 71.2 mmol) in dry DMSO (55 ml) at such a rate as to maintain the soln at 25°C under Ar. The mixture was stirred for 30 min at room temp to yield the red soln of ylide. To this ylide soln was added dropwise over 10 min as poln of 7b (19.3 g) in dry DMSO (30 ml) and the mixture was stirred for 1 h at room temp under Ar. Then the mixture was poured into ice, and extracted twice with ether. The combined ether soln was washed with water and brine, dried (MgSO₄), and concentrated in vacuo. The residue was passed through SiO₂ (70 g, n-hexane-ether (9:1)) to give 16.3 g of crude 8a, vmax 1660 (w), 1595 (w), 1475 (m), 1435 (m), 1115 (s), 1085 (m) cm⁻¹. This was employed in the next step without furthar purification.

A soln of **Sa** (16,3 g), p=TsOH+H₂O (0,8 g, 4.2 mmol) in MeOH (250 ml) was stirred for 4 h at room temp. Then the mixture was neutralized with K_2O_3 and filtered through Celite. The filtrate was concentrated in vacuo and the residue was extracted with EtOAc. The EtOAc soln was washed with water and brine, dried (HgSO₄), and concentrated in vacuo. The residue was chromatographed over SiO₂ (200 g). Elution with m-hexame-EtOAc (19:1) gave 12.6 g (87% from 7a) of 8b, n_5^{23} 1.5538; $(\alpha)_5^{23}$ +49.7° (c=1.79); vmax 3430 (m), 1660 (w), 1590 (w), 1430 (s), 1115 (s) cm⁻¹; ¹H NMR § 1.06 (9H, s), 1.20-1.35 (1H, m), 1.58-1.65 (1H, m), 1.83-2.02 (3H, m), 2.22-2.50 (2H, m), 2.90 (1H, br.s), 3.66 (1H, dd, J=10.1 and 8.5 Hz), 3.83 (1H, dd, J=10.1 and 4.7 Hz), 3.87-4.00 (1H, m), 4.81 (1H, br.s), 4.83 (1H, br.s), 7.36-7.48 (6H,m), 7.66-7.71 (4H, m), (Found: C, 76.46; H, 8.33. Calc for C₂₆H₃₄O₂Si: C,76.79; H, 8.424).

(15,35,55,65,7R)- and (15,3R,55,65,7R)-Spiro[7-hydroxy-6-hydroxymethylbicyclo[3,3,0)octane-3,1'-(2',2'-dichlorocyclopropane]] 9b and 9b'. To a stirred suspension of 8b (12,2 g, 30,1 mmol), powdered NaOH (4,0 g, 99,5 mmol) in CHCl₃ (60 ml) was added benzyltriethylammonium chloride (69 mg, 0,30 mmol) at room temp. After 2 min, a vigorous reflux took place and continued for 3 min. The mixture was stirred for further 10 min, then filtered through Celite. The filtrate was concentrated in vacuo to give 14.8 g of a crude mixture of 9a and 9a', vmax 3450 (m), 1590 (w), 1430 (s), 1115 (s), 1075 (s), 1050 (s) cm⁻¹. This was employed in the next step without further purification.

To a stirred soln of the crude mixture of 9a and 9a' (14.8 g) in THF (120 ml) was added dropwise a soln of (n-Bu)₄NF in THF (1N, 33.2 ml, 33.2 mmol) at room temp and the mixture was stirred for 15 min at room temp. Then THF was removed in vacuo from the reaction mixture, and the residue was extracted with EtOAc. The EtOAc soln was washed with brine, dried (MgSO₄), and concentrated in vacuo. The residue was chromatographed over SiO₂ (150 g). Elution with <u>n</u>-became-EtOAc (1:1-1:2) gave 6.6 g (87% from 8b) of a mixture of 9b and 9b'. Although the separation of 9b and 9b' was not necessary, a few fractions of chromatographically pure less polar isomer and those of more polar isomer were obtained. These were recrystalized to give pure samples.

Less polar isomer (the structure 9b was tentatively assigned.): m.p. $107-109^{\circ}C$ (from n-hexane-EtOAc, needles); $[\alpha]_{0}^{23}$ +14.5° (c=1.01, MeOH); vmax 3260 (s), 1355 (m), 1145 (m), 1080 (s), 1055 (s) cm⁻¹. ¹H NNR 6 1.37 (2H, s), 1.48-2.63 (9H, m), 2.43 (2H, s), 3.69 (1H, dd, J=10.5 and 8.5 Hz), 3.85-3.98 (2H, m); TLC (n-hexane-EtOAc=1:3) Rf 0.31. (Pound: C, 52.47r H, 6.46. Calc for $C_{11}H_{16}O_{2}Cl_{2}$: C, 52.60; H, 6.42%).

More polar isomer (the structure 9b' was tentatively assigned,): m.p. 184-186°C (from MeOH, rods); $[\alpha]_{2}^{23}$ -9.0° (c=1.10, MeOH); vmax 3280 (s), 1360 (m), 1135 (m), 1085 (s), 1055 (s) cm⁻¹; ¹H NNR (DM90-d₆) & 1.58 (2H, s), 1.20-2.50 (9H, m), 3.35-3.70 (3H, m), 4.32 (1H, br.t, J=5.1 Hz), 4.55 (1H, br.d, J=5.9 Hz); TLC (<u>n</u>-hexane-EtOAc=1:3) Rf 0.22. (Found: C, 52.20; H, 6.45. Calc for $C_{11}H_{16}O_{2}Cl_{2}$: C, 52.60; H, 6.42%).

(15,55,65,7R)-Spiro(7-hydroxy-6-hydroxymethylbicyclo[3,3,0]octane-3,1⁴-cyclopropane] 10. To a soln of a mixture of 9b and 9b' (9,4 g, 37,4 mmol) in dry <u>t</u>-BuOH (27,7 g, 0,37 mol) and dry THF (140 ml) was added finely cut Li (5.2 g, 0,75 mol) at room temp, and the mixture was stirred at room temp under Ar. After 15 min, a vigorous reflux took place and continued for 5 min, then a gentle reflux continued for 50 min. Then the mixture was stirred at reflux tamp for 15 h. After cooling, the mixture was poured into ice, and extracted twice with EtOAc. The combined EtOAc soln was washed with water and brine, dried (MgSO₄), and concentrated in vacuo. The residue was recrystallized from <u>m</u>-hexane-BtOAc to give 5.5 g of 10 containing a small amount of impurities, which were presumably monochloro derivatives. This was employed in the next step without further purification. An analytical sample of 10 was prepared as follows. SiO₂ chromatography (Merck Art, 9385, 230-400 mesh, <u>m</u>-hexane-BtOAc (1:1)) followed by recrystallization from <u>m</u>-hexane-BtOAc gave pure 10 as needles, mp. 87.5-89.0°C; (α) $\frac{2^4}{2}$ +20.4° (c=1,54); wmax 3270 (s), 1455 (m), 1360 (m), 1135 (m), 1075 (s), 1045 (s), 1010 (m) cm⁻¹; ¹H NMR 6 0.29-0.37 (2H, m), 0.51-0.59 (2H, m), 1.14-1.21 (2H, m), 1.41-1.57 (1H, m), 1.80-2.55 (6H, m), 3.00 (2H, br.s), 3.63 (1H, dd, J=10.5 and 8.6 Hz), 3.81-3.94 (2H, m). (Found: c, 71.93; H, 10.03. Calc for C11H1802; C, 72.49; H, 9.958).

(15,25,3R,55)-3-Hydroxy-2-hydroxymethyl-7,7-dimethylbicyclo[3,3,0]octane 11a. A mixture of 10 containing a small amount of monochloro derivatives (5,5 g) and PtO₂ (550 mg) in AcOH (80 ml) was shaken for 2 h at room temp under atmospheric pressure of hydrogen. Then the mixture was filtered through Celite, and AcOH was removed in vacuo from the filtrate. The residue was diluted with sat NaHCO₃ soln and extracted with EtOAc. The EtOAc coln was washed with sat NaHCO₃ soln and brine, dried (MgSO₄), and concentrated in vacuo. The residue was chromatographed over SiO₂ (Merck Art, 9385, 250 g). Elution with <u>n</u>-hexane-EtOAc (1:1) gave 4.5 g of 11a. Recrystallization from <u>n</u>-hexane-EtOAc gave 3.7 g (54% from 9b and 9b') of 11a as needles, m_pa, 89,0-90,0°C7 (α) β^4 +16,8° (c=1.52); vmax 3270 (s), 1465 (m), 1360 (m), 1130 (m), 1060 (s), 1035 (s) cm⁻¹; ¹H NMR & 0.87 (3H, s), 1.05 (3H, s), 1.15-1.42 (3H, m), 1.62-1.81 (3H, m), 2.03-2.45 (3H, m), 2.51 (2H, br.s), 3.61 (1H, dd, J=10.5 and 8.8 Hz), 3.85 (1H, dd, J=10.5 and 4.7 Hz), 3.92-4.05 (1H, m). (Found: C, 71.39; H, 11.03. Calc for C₁₁H₂₀O₂: C, 70.70; H, 10.94%).

(15,25,3R,5S)-2-t-Butyldiphenylsilyloxymethyl-3-hydroxy-7,7-dimethylbicyclo[3,30]octame 11b. To a stirred and ice-cooled soln of 11a (3,6 g, 19,4 mmol) and t-butylchlorodiphenylsilane (5,6 g, 20,4 mmol) in dry DMF (18 ml) was added imidazole (2,64 g, 38,8 mmol) and the mixture was stirred for 1.5 h at that temp. Then the mixture was poured into water and extracted with ether. The ether soln was washed with water and brine, dried (MgSO₄), and concentrated in vacue. The residue was chromatographed over SiO₂ (120 g). Elution with n-hexane-EtOAc (9:1) gave 7.2 g (B84) of 11b, n_{p}^{23} 1,5403; $\lfloor\alpha\rfloor_{d}^{23}$ +32.2° (c=2.31); vmax 3420 (m), 1590 (w), 1465 (m), 1430 (m), 1115 (s) cm⁻¹; ¹H NMR & 0.82 (3H, s), 1.03 (3H, s), 1.66 (9H, s), 1.14-2.54 (9H, m), 3.02 (1H, br.s), 3.63 (1H, dd, J=10.0 and 8.8 Hz), 3.84 (1H, dd, J=10.0 and 4.8 Hz), 3.98-4.11 (1H, m), 7.34-7.43 (6H, m), 7.66-7.74 (4H, m). (Found: C, 76.32; H, 9.02. Calc for C₂₇H₃₈O₂Si: C, 76.72; H, 9.064).

(15,25,55)-3,3-Ethylenedioxy-2-hydroxymethyl-7,7-dimethylbicyclo[3,3,0]octane (+)-2. To a soln of 11b (7,1 g, 16,8 mmol) in dry CH₂Cl₂ (100 ml) was added PCC (7,3 g, 33,6 mmol) at room temp and the mixture was stirred for 3 h at room temp. Then the CH₂Cl₂ layer was decanted and the residue was washed with ether. The combined organic soln was passed through a short column of Plorisil, and concentrated in vacuo to give 7.2 g of crude 12, vmax 1740 (s), 1590 (w), 1465 (m), 1430 (m), 1115 (s) cm⁻¹. This was employed in the next step without further purification.

A mixture of 12 (7.2 g), ethylene glycol (20 ml), a catalytic amount of p-TBOH-H₂O, and benzene (200 ml) was stirred for 18 h at reflux temp with azeotropic removal of water by Dean-Stark apparatus. After cooling, the mixture was washed with sat NaHCO₃ soln and brine, dried (MgSO₄), and concentrated in vacuo to give 7.9 g of 13a, vmax 1590 (w), 1465 (m), 1430 (m), 1115 (s) cm⁻¹. This was employed in the next step without further purification.

To a stirred soln of 13a (7.9 g) in THP (100 ml) was added (<u>n</u>-Bu)₄NP in THP (1N, 18,5 ml, 18,5 mmol) at room temp and the mixture was stirred for 2 h at room temp. Then THP was removed <u>in vacuo</u> from the reaction mixture. The residue was poured into water and extracted with EtOAc. The EtOAc soln was washed with water and brine, dried (MgSO₄), and concentrated <u>in vacuo</u>. The residue was chromatographed over SiO₂ (120 g). Elution with <u>n</u>-hexane-EtOAc (4:1) gave 2.8 g (74% from 11b) of (+)-2, which crystallized on standing. Recrystallization from <u>n</u>-hexane gave (+)-2 as plates, mp. 38,5-39.5°C; $\{\alpha\}_2^{24} + 23.6^{\circ}$ (c=1,58); wmax 3510 (s), 1465 (m), 1285 (m), 1175 (m), 1070 (m), 1045 (s), 1025 (m) cm⁻¹; ¹H NMR & 0.90 (3H, s), 1.05 (3H, s), 1.15-1.31 (2H, m), 1.47 (1H, dd, J=13.4 and 6.0 Hz), 1.63-1.80 (2H, m), 1.90-1.98 (1H, m), 2.08 (1H, dd, J=13.3 and 8,5 Hz), 2.44-2.58 (2H, m), 2.77 (1H, br.s), 3.65-3.68 (2H, m), 3.86-3.98 (4H, m); ¹³C NNR & 5.72, 2.89, 38.3, 41.5, 42.2, 42.7, 47.9, 48.8, 53.6, 61.8, 64.1, 64.6, 120.8; MS: <u>m/z</u> 226.1578 (M⁺). Calc for C₁₃H₂₂O₃: 226.1569. (Found: C, 68.71; H, 9.80, Calc for C₁₃H₂₂O₃: C, 68.991; H, 9.80%).

 $\frac{(15,25,55)-2-(Diazoacetoxy)methyl-3,3-ethylenedioxy-7,7-dimethylbicyclo[3,3,0]octane}{(4,2,9) in 65% yield (3,5,9) according to Cane and Thomas⁴, [a)⁶₁ +14,0° (c=1,51); vmax 2120 (a), 1710 (a), 1400 (m), 1370 (m), 1240 (m), 1190 (m) cm⁻¹; ¹H NNR 6 0,90 (3H, s), 1.05 (3H, s), 1.10-1.79 (5H, m), 1.99-2.59 (4H, m), 3,81-3,97 (4H, m), 4,14 (1H, dd, J=11.0 and 7.8 Hz), 4.27 (1H, dd, J=11.0 and 6.1 Hz), 4.75 (1H, s); MS: <math>\underline{m}/\underline{x}$ 294.1551 (M⁺). Calc for C₁₅H₂₂O₈N₂: 294.1579.

 $\frac{(4aS,6aS,9aR)-Octahydro-5,5-ethylenedicary-8,8-dimethyl-2-coopentaleno[1,6a-c]gyran 14. This was prepared from 13b (795 mg) in 40% yield (288 mg) as an oil according to Cane and Thomes.⁴ This sample crystallized on standing. Recrystallization from <u>n</u>-hexane-ether gave pure 14 as prisms, m_p. 62,4-63.0°C; [ci]<math>\beta^3$ +0,7t0.1° (c=1,06); vmax 1745 (s), 1285 (m), 1255 (m), 1105 (m), 1035 (m), 1035 (m), 1070 (m) cm⁻¹; ¹H NNR § 1.01 (3H, s), 1.05 (3H, s), 1.56-1.80 (5H, m), 2.04 (1H, dd, J=13.7 and 8.5 Hz), 2.14 (1H, t, J=7.1 Hz), 2.30-2.43 (1H, m), 2.60 (2H, s), 3.79-3.99 (4H, m), 4.22 (2H, d, J=7.1 Hz); ¹³C NNR § 27.9, 29.8, 39.4, 40.6, 42.5, 47.2, 47.9, 50.8, 54.1, 56.2, 64.1, 64.3, 66.5, 117.8, 172.6; NS: <u>m/z</u> 266.1533 (M⁺). Calc for C₁₅H₂₂O₄: 266.1518. (Found: C, 67.35; H, 8.38, Calc for C₁₅H₂₂O₄: C, 67.64; H, 8.33%).

(2R,4aS,6aS,9aR)- and (2S,4aS,6aS,9aR)-Octahydro-2-methoxy-8,8-dimethylpentaleno[1,6a-c]pyran-5(6H)-one 15 and 15⁴. The lactone 14 (1.42 g) was converted to 15 (483 mg, 38%), a mixture of 15 and 15⁴ (121 mg, 10%) and 15⁴ (348 mg, 27%) according to Cane and Thomas.⁴

15: m.p. 53.7-54.5°C (from <u>n</u>-hexane, needles); $[\alpha]_{6}^{2}$ -254° (c=1.01); vmax 1740 (s), 1370 (m), 1195 (m), 1130 (s), 1095 (m), 1055 (s) cm⁻¹, ¹H NMR & 1.06 (3H, s), 1.10 (3H, s), 1.30-2.47 (10H, m), 3.33 (3H, s), 3.77 (1H, dd, J=11.7 and 4.2 Hz), 4.01 (1H, d, J=11.7 Hz), 4.61 (1H, br. s); ¹³C NMR & 30.8, 31.3, 38.5, 40.2 (2C), 44.4, 45.9, 46.9, 53.0, 53.1, 54.2, 54.8, 97.4, 217.4, NS: <u>m/z</u> 238.1596 (M⁺). Calc for C₁₄H₂₂O₃: 238.1569. (Pound: C, 70.55; H, 9.39. Calc for C₁₄H₂₂O₃: C, 70.56; H, 9.30).

15': $[a]_{6^2}^2 -93.4^\circ$ (c=0.99); vmax 1745 (s), 1450 (m), 1390 (m), 1140 (s), 1110 (s), 1070 (s) cm⁻¹, ¹H NMR 6 1.09 (3H, s), 1.12 (3H, s), 1.32-2.52 (10H, m), 3.41 (3H, s), 3.62 (1H, dd, J=12.2 and 4.6 Hz), 4.23 (1H, dd, J=9.3 and 2.2 Hz), 4.38 (1H, dd, J=12.2 and 2.2 Hz); ¹³C NNR 6 30.4, 31.1, 40.4, 40.6, 41.2, 44.2, 47.5, 49.1, 53.2, 53.9, 55.7, 59.7, 100.4, 216.7. MS: $\underline{m}/\underline{z}$ 238.1576 (M⁺). Calc for $C_{14}H_{22}O_{3}$: 238.1569.

(2R,4aS,6aS,9aR)-1,2,4,4a,6a,7,8,9- and (2R,6aS,9aS)-1,2,4,6,6a,7,8,9-Octahydro-5-iodo-2-methoxy-8,8-dimethylpentaleno [1,6a-c)pyram 16 and 17. According to Paquette et al.,² 15 (474 mg) was converted to 533 mg of a mixture of 16 and 17. This mixture was chromatographed over SiO₂ (Merck Art, 9385, 25 g). Elution with <u>n</u>-hexane-ECOAC (40:1) gave 259 mg (41% from 15) of a less polar isomer 17, which was recrystallized from <u>n</u>-hexane to give rods, and 263 mg (41% from 15m) of a more polar isomer 16.

16: $[\alpha]_{0}^{23}$ -78,0° (c=1.08); vmax 1615 (w), 1445 (m), 1115 (m), 1075 (s), 1050 (m) cm⁻¹; ¹H NMR & 1.02 (3H, s), 1.03 (3H, s), 1.42 (1H, dd, J=12.9 and 4.4 Hz), 1.56-1.79 (4H, m), 2.03 (1H, dd, J=14.4 and 5.1 Hz), 2.50-2.57 (1H, m), 2.86-3.00 (1H, m), 3.36 (3H, s), 3.70 (1H, dd, J=12.2 and 1.7 Hz), 3.83 (1H, dd, J=12.2 and 3.7 Hz), 4.55 (1H, dd, J=7.8 and 5.1 Hz), 6.16 (1H, br); MS: m/z 348.0562 (M⁺). Calc for C₁₄H₂₁O₂I: 348.0588.

17: m.p. $70.1-71.6^{\circ}C_{1}^{\circ}[\alpha]_{2}^{3}$ -151° (c=1.08); vmax 1655 (w), 1455 (m), 1370 (m), 1205 (m), 1110 (s), 1045 (s) 960(s) cm⁻¹; ¹H NMR & 0.97 (3H, s), 0.98 (3H, s), 1.22 (1H, dd, J=12.7 and 6.6 Hz), 1.56-1.97 (5H, m), 2.39-2.50 (2H, m), 2.89-3.03 (1H, m), 3.37 (3H, s), 4.08 (1H, d, J=11.7 Hz), 4.27 (1H, d, J=11.7 Hz, with additional fine coupling), 4.67 (1H, m). (Found: C, 48.36; H, 6.11. Calc for $C_{14}H_{21}O_{2}I$: C, 48.29; H, 6.08%).

 $\frac{(25,435,535,9aR)-1,2,4,4a,6a,7,8,9}{(1,6a-c)pyran} \text{ and } \frac{(25,635,9aR)-1,2,4,6,5a,7,8,9-Octahydro-5-iodo-2-methoxy-8,8-dimethylpentaleno}{(1,6a-c)pyran} \text{ 16' and } 17'. According to Paquette et al.,² 15' (320 mg) was converted to a mixture (341 mg) of 16' and 17', This mixture was chromatographed over SiO₂ (Merck Art. 9385, 50 g). Elution with <u>n</u>-hexane-ether (40:1) gave 131 mg (28) from 15') of a less polar isomer 16', 79 mg (17's from 15') of a mixture of 16' and 17', and 114 mg (24's from 15') of a more polar isomer 17'.$

16': $[\alpha]_{6}^{22}$ +61.9° (c=1.26); vmax 1605 (w), 1465 (m), 1120 (s), 1075 (s), 1020 (m) cm⁻¹; ¹H NMR 6 1.01 (3H, s), 1.04 (3H, s), 1.28 (1H, dd, J=12.7 and 8.0 Hz), 1.58-1.90 (5H, m), 2.74-2.89 (2H, m), 3.38 (3H, s), 3.52 (1H, dd, J=11.7 and 10.0 Hz), 3.80 (1H, dd, J=11.7 and 6.8 Hz), 4.64 (1H, dd, J=8.3 and 5.1 Hz), 6.20 (1H, br); MS: m/z 348.0547 (M⁺). Calc for $C_{14}H_{21}O_{2}I_{1}^{2}$ 348.0588.

17: $[\alpha]_{6}^{22}$ +27.8° (c=1.08); vmax 1660 (w), 1460 (m), 1145 (s), 1075 (s), 1060 (s), 1035 (m) cm⁻¹; ¹H NMR 6 1.00 (3H, s), 1.01 (3H, s), 1.24 (1H, dd, J=12.7 and 8.0 Hz), 1.50-1.97 (5H, m), 2.38-2.58 (2H, m), 2.90-3.15 (1H, m), 3.47 (3H, s), 4.04 (1H, d, J=12.7 Hz, with additional fine coupling), 4.39 (1H, d, J=12.7 Hz), 4.53 (1H, dd, J=9.0 and 2.6 Hz). (Found: C, 48.25; H, 6.03. Calc for $C_{14}H_{21}O_{2}I$: C, 48.29; H, 6.07%).

<u>Methyl</u> (2R,4a5,6a5,9aR)-1,2,4,4a,6a,7,8,9-octahydro-2-methoxy-8,8-dimethylpentaleno[1,6a-c]pyran-5-carboxylate **18** According to Paquette <u>et al.</u>² **16** (338 mg) was converted to **18** (269 mg, 99%); $\{\alpha\}_{L}^{23}$ -85.4° (c=1,03); umax 1715 (s), 1635 (w), 1440 (m), 1280 (m), 1235 (m), 1120 (m), 1060 (s) cm⁻¹, ¹H NMR & 0.99 (3H, s), 1.04 (3H, s), 1.46 (1H, dd, J=13.3 and 4.5 Hz), 1.57-1.87 (4H, m), 2.02 (1H, dd, J=14.4 and 5.1 Hz), 2.81 (1H, br.s), 3.08-3.20 (1H, m), 3.37 (3H, s), 3.73 (3H, s), 3.79 (1H, dd, J=12.0 and 2.0 Hz), 3.96 (1H, dd, J=12.0 and 3.9 Hz), 4.64 (1H, dd, J=8.4 and 5.0 Hz), 6.78 (1H, br.s). MS: <u>m/z</u> 280,1670 (M⁺). Calc for C₁₆H₂₄O₄: 280,1674. (Found: C, 68,75) H, 8,74. Calc for C₁₆H₂₄O₄: C, 68,55).

<u>Methyl</u> (25,4a5,6a5,9aR)-1,2,4,4a,6a,7,8,9-octahydro-2-methoxy-8,8-dimethylpentaleno[1,6a-c]pyran-5-carboxylate 18'. According to Paquette et al.,² 16' (116 mg) was converted to 18' (79 mg, 85%); $(a)_{0}^{2}$ +91,0° (c=0.82); vmax 1720 (s), 1630 (w), 1440 (m), 1275 (m), 1260 (m), 1120 (m), 1070 (s) cm⁻¹; ¹H NMR 6 1.02 (3H, s), 1.03 (3H, s), 1.25-1.92 (6H, m), 2.93-3.10 (2H, m), 3.36 (3H, s), 3.55 (1H, dd, J=11.6 and 10.5 Hz), 3.71 (3H, s), 4.08 (1H, dd, J=11.6 and 7.1 Hz), 4.69 (1H, dd, J=7.6 and 5.4 Hz), 6.82 (1H, br). MS: m/z 280.1664 (M⁺). Calc for C₁₆H₂₄O₄: 280.1674. (Pound: C, 68.91; H, 8.77. Calc for C₁₆H₂₄O₄: C, 68.55; H, 8.63%).

<u>Methyl</u> (4a5,6a5,9aR)-1,2,4,4a,6a,7,8,9-octahydro-2-oxo-8,8-dimethylpentaleno[1,6a-c]pyran-5-carboxylate 19. According to Paquette et al.,² 18 (247 mg) was converted to 193 mg (83%) of 19. Similarly 18' (71 mg, 0,25 mmol) was converted to 52 mg (78%) of 19; (a) β^4 -58.3° (c=1.06); vmax 1755 (s), 1715 (s), 1635 (m), 1435 (m), 1355 (m), 1270 (m), 1255 (m), 1220 (m), 1120 (m), 1080 (m) cm⁻¹; ¹H NMR & 1.02 (3H, s), 1.06 (3H, s), 1.37 (1H, dd, J=12.9 and 5.9 Hz), 1.67-1.93 (3H, m), 2.55 (1H, d, J=14.4 Hz), 2.66 (1H, d, J=14.4 Hz), 3.07-3.21 (2H, m), 3.75 (3H, s), 4.43 (1H, dd, J=11.7 and 4.2 Hz), 4.50 (1H, dd, J=11.7 and 4.2 Hz), 6.84 (1H, br). MS: $\underline{m}/\underline{z}$ 264.1352 (M⁺). Calc for $C_{15}H_{20}O_4$: 264.1361.

 $\frac{(-)-\text{Pentalenolactone}}{(-)-\text{Pentalenolactone}} \underbrace{E} \ \underline{\text{methyl}} \ \underline{\text{ester}} \ 1. \ \text{According to Paquette} \ \underline{et} \ \underline{al}_{*}^{2} \ 19 \ (164 \ \text{mg}) \ \text{was converted to 96 \ mg} \ (561; 731 \ \text{based on the consumed 19) of 1; \ [a]_{6}^{22} -70.2^{\circ} \ (c=1.04) \ [natural 1^{15}: \ [a]_{6}^{23} -70.6^{\circ} \ (c=1.37, \ CHCl_3)]; \ CD \ (c=1.3 \ x \ 10^{-3} \ \text{mol/l, } \underline{n} \ \text{hexane} \ (\theta) \ (nm) \ +3.8 \ x \ 10^{4} \ (219.0) \ [natural 1 \ CD \ (c=1.3 \ x \ 10^{-3} \ \text{mol/l, } \underline{n} \ \text{hexane} \ +3.6 \ x \ 10^{4} \ (218.5)]; \ \text{vmax} \ (CHCl_3 \ \text{soln}) \ 3020 \ (m), \ 2950 \ (m), \ 2950 \ (m), \ 2900 \ (w), \ 2860 \ (w), \ 1730 \ (\text{sh}), \ 1710 \ (\text{s}), \ 1635 \ (w), \ 1455 \ (w), \ 1470 \ (w), \ 1440 \ (m), \ 1385 \ (w), \ 1355 \ (m), \ 1355 \ (w), \ 1000 \ (w), \ 965 \ (w), \ 970 \ (w), \ 940 \ (w) \ cm^{-1}; \ 1H \ \text{NMR} \ 1 \ 105 \ (3H, \ a), \ 1,70 \ (3H, \ a), \ 1,44 \ (1H, \ dd, \ J=12.9 \ and \ 8.9 \ Hz), \ 2,16 \ (1H, \ d, \ J=13.9 \ Hz), \ 3,15-3,36 \ (2H, \ m), \ 3,76 \ (3H, \ s), \ 4,25-4,40 \ (2H, \ m), \ 5,58 \ (1H, \ a), \ 5,91 \ (1H, \ a), \ 5,85 \ (1H, \ br), \ 1^{3}C \ \text{NMR} \ 29.5, \ 29.7, \ 40.7, \ 46.3, \ 51.6, \ 53.5, \ 55.2, \ 57.0, \ 58.1, \ 67.4, \ 120.0, \ 131.1, \ 144.6, \ 149.9, \ 164.4, \ 170.1. \ \text{Its IR and NMR spectra were identical with those of the natural product 1 \ MS: \ m/z \ 276.1345 \ (M^{4}). \ Calc \ 67.69.55; \ H, \ 7.290.3$

Acknowledgement -- We thank Professor D. E. Cane, Brown University, for his kind cooperation to reisolate pentalenolactone E Methyl ester. Financial support of this work by Nisshin Flour Nilling Co., Ltd. is acknowledged with thanks.

REFERENCES

- 1 D. E. Cane and T. Rossi, Tetrahedron Lett. 2973 (1979).
- 2 L. A. Paquette, G. D. Annis and H. Schostarez, <u>J. Am. Chem. Soc.</u> 104, 6646 (1982).
- 3 T. Ohtsuka, H. Shirahama and T. Matsumoto, Tetrahedron Lett. 24, 3851 (1983).
- 4 D. E. Cane, and P. J. Thomas, J. Am. Chem. Soc. 106, 5295 (1984).
- 5 D. F. Taber and J. L. Schuchardt, J. Am. Chem. Soc. 107, 5289 (1985); Idem, Tetrahedron 43, 5677 (1987).
- 6 J. P. Marino, C. Silveira, J. Comasseto and N. Petragnani, J. Org. Chem. 52, 4139 (1987).
- 7 D. H. Hua, M. J. Coulter and L. Badejo, Tetrahedron Lett. 28, 5465 (1987).
- 8 K. Mori and M. Tsuji, Tetrahedron 42, 435 (1986).
- 9 J. A. Dale and H. S. Mosher, J. Am. Chem. Soc. 95, 512 (1973).
- 10 R. J. Rawson and I. T. Harrison, J. Org. Chem. 35, 2057 (1970).
- 11 K. Maruoka, Y. Pukutani and H. Yamanoto, <u>J. Org. Chem.</u> 50, 4412 (1985).
- 12 S. Julia and A. Ginebreda, Synthesis 682 (1979).
- 13 P. G. Gassman and P. G. Pape, <u>J. Org. Chem</u>. 29, 160 (1964).
- 14 E. J. Corey and J. W. Suggs, Tetrahedron Lett. 2647 (1975),
- 15 D. E. Cane, personal communication to K.M. dated April 22, 1987.